Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models

نویسندگان

  • Christian B. Hansen
  • James B. McDonald
  • Panayiotis Theodossiou
چکیده

This paper provides a survey of three families of flexible parametric probability density functions (the skewed generalized t, the exponential generalized beta of the second kind, and the inverse hyperbolic sine distributions) which can be used in modeling a wide variety of econometric problems. A figure, which can facilitate model selection, summarizing the admissible combinations of skewness and kurtosis spanned by the three distributional families is included. Applications of these families to estimating regression models demonstrate that they may exhibit significant efficiency gains relative to conventional regression procedures, such as ordinary least squares estimation, when modeling nonnormal errors with skewness and/or leptokurtosis, without suffering large efficiency losses when errors are normally distributed. A second example illustrates the application of flexible parametric density functions as conditional distributions in a GARCH formulation of the distribution of returns on the S&P500. The skewed generalized t can be an important model for econometric analysis. JEL: C13, C14, C15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new non oriented models for calculating the efficiency of decision-making units in the presence of flexible variables

In assessing the relative efficiency of decision-maker units by classical Data Envelopment Analysis (DEA) models, the status of the data is determined from the input or output points of views. In real issues, there are some data whose statuses are debatable. Some decision making units consider them as input to achieve higher efficiency while some other decision making units consider them ...

متن کامل

Likelihood Inference in a Class of Nonregular Econometric Models

In this paper we study inference for a conditional model with a jump in the conditional density, where the location and size of the jump are described by regression lines. This interesting structure is shared by several structural econometric models. Two prominent examples are the standard auction model where density jumps from zero to a positive value, and the equilibrium job search model, whe...

متن کامل

M-testing Using Finite and Infinite Dimensional Parameter Estimators by Halbert White And

The m-testing approach provides a general and convenient framework in which to view and construct speci cation tests for econometric models. Previous m-testing frameworks only consider test statistics that involve nite dimensional parameter estimators and in nite dimensional parameter estimators a ecting the limit distribution of the m-test statistics. In this paper we propose a new m-testing f...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006